EURAX DME 440 with RS 485 interface Programmable multi-transducer

for the measurement of electrical variables in heavycurrent power system

Application

EURAX DME 440 (Fig. 1) is a programmable transducer with a RS 485 bus interface (MODBUS ${ }^{\ominus}$). It supervises several variables of an electrical power system simultaneously and generates 4 proportional analogue output signals.

The RS 485 interface enables the user to determine the number of variables to be supervised (up to the maximum available). The levels of all internal energy counters that have been configured (max. 4) can also viewed. Provision is made for programming the EURAX DME 440 via the bus. A standard EIA 485 interface can be used, but there is no dummy load resistor for the bus.

The transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions. This interface is needed for bus operation to configure the device address, the Baud rate and possibly increasing the telegram waiting time (if the master is too slow) defined in the MODBUS ${ }^{\circledR}$ protocol.

The usual methods of connection, the types of measured variables, their ratings, the transfer characteristic for each output and the type of internal energy counter are the main parameters that can be programmed.

The ancillary functions include a power system check, provision for displaying the measured variably on a PC monitor, the simulation of the outputs for test purposes and a facility for printing nameplates.

The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility (EMC) and safety (IEC 1010 resp. EN 61010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features / Benefits

- Simultaneous measurement of several variables of a heavy-current power system / Full supervision of an asymmetrically loaded four-wire power system, rated current 1 to 6 A, rated voltage 57 to 400 V (phase-to-neutral) resp. 100 to 693 V (phase-to-phase)

Measured variables	Output	Types
Current, voltage (rms),	4 analogue outputs and active/reactive/apparent power bus interface	DME 440
RMS value of the current with wire	RS 485 (MODBUS)	
setting range (bimetal measuring	2 analogue outputs and function)	
Slave pointer function for the	4 digital outputs	DME 424
measurement of the RMS value IB	or Frequency	4 analogue outputs and Average value of the currents with sign of the active power (power 2 digital outputs system only)

Fig. 1. EURAX DME 440 as plug-in module for 19" rack-mounted case, front plate width 14 TE.

- For all heavy-current power system variables
- 4 analogue outputs
- Input voltage up to 693 V (phase-to-phase)
- Universal analogue outputs (programmable)
- High accuracy: U/I $0.2 \%, \mathrm{P} 0.25 \%$ (under reference conditions)
- 4 integrated energy counters, storage every each 203 s , storage for: 20 years
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings
- DC-, AC-power pack with wide power supply tolerance / Universal
- Plug-in module (front plate width 14 TE) for 19 " rack-mounted case / Ease of mounting in rack system

[^0]Fig. 2. Block diagram.

EURAX DME 440 with RS 485 interface
 Programmable multi-transducer

Symbols

Symbols

Meaning

X	Measured variable

Input voltage

Average value of the voltages
(U1N + U2N + U3N) / 3
Input current
AC current L1
AC current L2
AC current L3
Rated value of the input current active power (P) (bimetal measuring function)
Response time for IB the RMS value IB
Response time for BS

Frequency of the input variable
Rated frequency

Active power phase 1
(phase-to-neutral L1-N)
Active power phase 2
(phase-to-neutral L2-N)
Active power phase 3

Lower limit of the measured variable
Break point of the measured variable
Upper limit of the measured variable

Lower limit of the output variable
Break point of the output variable
Upper limit of the output variable

Rated value of the input voltage
Phase-to-phase voltage L1-L2
Phase-to-phase voltage L2 - L3
Phase-to-phase voltage L3-L1
Phase-to-neutral voltage $\mathrm{L} 1-\mathrm{N}$
Phase-to-neutral voltage L2-N
Phase-to-neutral voltage L3-N

Average value of the currents $(11+12+13) / 3$
Average value of the currents and sign of the

RMS value of the current with wire setting range

Slave pointer function for the measurement of

Phase-shift between current and voltage

Active power of the system $\mathrm{P}=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$
(phase-to-neutral L3-N)

Symbols	Meaning (Continuation)	
Q	Reactive power of the system $\mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3$	
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	
Q3	Reactive power phase 3 (phase-to-neutral L3-N)	
S	Apparent power of the system $S=\sqrt{I_{1}^{2}+I_{2}^{2}+I_{3}^{2}} \cdot \sqrt{U_{1}^{2}+U_{2}{ }^{2}+U_{3}^{2}}$	
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	
S3	Apparent power phase 3 (phase-to-neutral L3-N)	
Sr	Rated value of the apparent power of the system	
PF	Active power factor $\cos \varphi=\mathrm{P} / \mathrm{S}$	
PF1	Active power factor phase $1 \quad \mathrm{P} 1 / \mathrm{S} 1$	
PF2	Active power factor phase 2 P2/S2	
PF3	Active power factor phase 3 P3/S3	
QF	Reactive power factor $\sin \varphi=\mathrm{Q} / \mathrm{S}$	
QF1	Reactive power factor phase 1 Q1/S1	
QF2	Reactive power factor phase 2 Q2/S2	
QF3	Reactive power factor phase 3 Q3/S3	
LF	Power factor of the system $L F=\operatorname{sgnQ} \cdot(1-\|P F\|)$	
LF1	Power factor phase 1 sgnQ1•(1-\|PF1)
LF2	Power factor phase 2 sgnQ2 • (1 - \|PF2)
LF3	Power factor phase 3 sgnQ3 $\cdot(1-\|P F 3\|)$	
c	Factor for the intrinsic error	
R	Output load	
Rn	Rated burden	
H	Power supply	
Hn	Rated value of the power supply	
CT	c.t. ratio	
VT	v.t. ratio	

Applicable standards and regulations

IEC 688 or
EN 60688

IEC 1010 or
EN 61010

IEC 529 or
EN 60529
IEC 255-4 Part E5

IEC 1000-4-2/-3/-4/-6

EN 55011

IEC 68-2-1/-2/-3/-6/-27
or
EN 60 068-2-1/-2/-3/-6/-27 Ambient tests

DIN 40110
DIN 43807
IEC 1036

DIN 43864

UL 94
-1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock
Electrical measuring transducers for converting AC electrical variables into analogue and digital signals

Safety regulations for electrical measuring, control and laboratory equipment

Protection types by case (code IP)
High-frequency disturbance test (static relays only)

Electromagnetic compatibility for in-dustrial-process measurement and control equipment

Electromagnetic compatibility of data processing and telecommunication equipment
Limits and measuring principles for radio interference and information equipment

AC quantities
Terminal markings
Alternating current static watt-hour meters for active energy (classes 1 and 2)

Current interface for the transmission of impulses between impulse encoder counter and tarif meter

Tests for flammability of plastic materials for parts in devices and appliances

Technical data

Inputs

Input variables:
Measuring ranges:
Waveform:
Rated frequency:
see Table 2 and 3
see Table 2 and 3
Sinusoidal
50... $60 \mathrm{~Hz} ; 162 / 3 \mathrm{~Hz}$

Consumption:
Voltage circuit: $\leq \mathrm{U}^{2} / 400 \mathrm{k} \Omega$ Condition:
Characteristic XH01 ... XH10
Current circuit: $\leq \mathrm{I}^{2} \cdot 0.01 \Omega$

Continuous thermal ratings of inputs

Current circuit	10 A400 V single-phase AC system 693 V three-phase system Voltage circuit480 V single-phase AC system 831 V three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit	400 V single-phase AC system 693 V three-phase system		
100 A	5	3 s	5 min .
250 A	1	1 s	1 hour
Voltage circuit	$1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$		
Single-phase AC system 600 V $\mathrm{H}_{\text {intern }}$: 1.5 Ur	10	10 s	10 s
Three-phase system 1040 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 s

MODBUS ${ }^{\circledR}$ (Bus interface RS-485)
Terminals:
GND on pin 2d Tx- / Rx- on pin $6 z$ Tx+ / Rx+ on pin 6d (see Fig. 6)
Connecting cable: Screened twisted pair
Max. distance:
Baudrate:
Number of bus stations:
Dummy load:

Approx. 1200 m (approx. 4000 ft .) 1200 ... 9600 Bd (programmable)

32 (including master)
Not required

EURAX DME 440 with RS 485 interface
 Programmable multi-transducer

Analogue outputs Θ

For the outputs A, B, C and D:

Output variable Y	Impressed DC current	Impressed DC voltage
Full scale Y2	see "Ordering information"	see "Ordering information"
Limits of output signal for input overload and/or $\quad \mathrm{R}=0$	$1.25 \cdot \mathrm{Y} 2$	40 mA
$\mathrm{R} \rightarrow \infty$	30 V	1.25 Y 2
Rated useful range of output load	$0 \leq \frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \leq \frac{15 \mathrm{~V}}{\mathrm{Y} 2}$	$\frac{\mathrm{Y} 2}{2 \mathrm{~mA}} \leq \frac{\mathrm{Y} 2}{1 \mathrm{~mA}} \leq \infty$
AC component of output signal (peak-to-peak)	$\leq 0.005 \mathrm{Y} 2$	$\leq 0.005 \mathrm{Y} 2$

The outputs A, B, C and D may be either short or open-circuited. They are electrically insulated from each other and from all other circuits (floating).
All the full-scale output values can be reduced subsequently using the programming software, but a supplementary error results.
The hardware full-scale settings for the analogue outputs may also be changed subsequently. Conversion of a current to a voltage output or vice versa is also possible. This necessitates changing resistors on the output board. The full-scale values of the current and voltage outputs are set by varying the effective value of two parallel resistors (better resolution). The values of the resistors are selected to achieve the minimum absolute error. Calibration with the programming software is always necessary following conversion of the outputs. Refer to the Operating Instructions. Caution: The warranty is void if the device is tampered with!

Reference conditions

Ambient temperature:
Pre-conditioning:

Input variable:
Power supply:
Active/reactive factor:
Frequency:
Waveform:
Output load:

Miscellaneous:
$+23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$
30 min. acc. to EN 60688
Section 4.3, Table 2
Rated useful range
$H=H n \pm 1 \%$
$\cos \varphi=1$ resp. $\sin \varphi=1$
$50 \ldots 60 \mathrm{~Hz}, 162 / 3 \mathrm{~Hz}$
Sinusoidal, form factor 1.1107
DC current output:
$R_{n}=\frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \pm 1 \%$
DC voltage output:
$R_{n}=\frac{Y 2}{1 m A} \pm 1 \%$
EN 60688

System response

Accuracy class:
(the reference value is the full-scale value Y 2)

Measured variable	Condition	Accuracy class*
System: Active, reactive and apparent power	$\begin{aligned} & 0.5 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5 \\ & 0.3 \leq \mathrm{X} 2 / \mathrm{Sr}<0.5 \end{aligned}$	$\begin{array}{\|l\|l} 0.25 c \\ 0.5 c \end{array}$
Phase: Active, reactive and apparent power	$\begin{aligned} & 0.167 \leq X 2 / S r \leq 0.5 \\ & 0.1 \leq X 2 / S r<0.167 \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{c} \\ & 0.5 \mathrm{c} \end{aligned}$
Power factor, active power and reactive power	$\begin{aligned} & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & (X 2-X 0)=2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & (X 2-X 0)=2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 0.25 c \\ 0.5 & c \\ 1.0 & c \\ 0.5 & c \\ 1.0 & c \\ 2.0 & c \end{array}\right.$
AC voltage	0.1 Ur $\leq \mathrm{U} \leq 1.2 \mathrm{Ur}$	0.2 c
AC current/ current averages	0.1 Ir $\leq 1 \leq 1.5 \mathrm{Ir}$	0.2 c
System frequency	$0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur}$ resp. $0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.5 \mathrm{Ir}$	$\begin{aligned} & 0.15+0.03 \mathrm{c} \\ & \left(\mathrm{f}_{\mathrm{N}}=50 \ldots 60 \mathrm{~Hz}\right) \\ & 0.15+0.1 \mathrm{c} \\ & \left(\mathrm{f}_{\mathrm{N}}=162 / 3 \mathrm{~Hz}\right) \end{aligned}$
Energy counter	acc. to IEC 1036 $0.1 \mathrm{lr} \leq \mathrm{I} \leq 1.5 \mathrm{Ir}$	1.0

* Basic accuracy 0.5 c for applications with phase-shift

Duration of the
measurement cycle:

Response time:

Approx. 0.5 to s 1.2 s at 50 Hz , depending on measured variable and programming
1 ... 2 times the measurement cycle

Factor c (the highest value applies):
Linear characteristic:

$$
\begin{aligned}
& c=\frac{1-\frac{Y 0}{Y 2}}{1-\frac{X 0}{X 2}} \text { or } c=1 \\
& c=\frac{Y 1-Y 0}{X 1-X 0} \cdot \frac{X 2}{Y 2} \text { or } c=1 \\
& c=\frac{1-\frac{Y 1}{Y 2}}{1-\frac{X 1}{X 2}} \text { or } c=1
\end{aligned}
$$

Bent characteristic:
$X 0 \leq X \leq X 1$

Fig. 3. Examples of settings with linear characteristic.

Fig. 4. Examples of settings with bent characteristic.

Influencing quantities and permissible variations
Acc. to IEC 688

Safety

Protection class:	II
Overvoltage category:	III
Insulation test (versus earth):	Input voltage: AC 400 V
	Input current: AC 400 V
	Output: DC 40 V
	Power supply: $\begin{aligned} & \text { AC } 400 \mathrm{~V} \\ & \\ & \\ & \text { DC } 230 \mathrm{~V}\end{aligned}$
Surge test:	5 kV ; 1.2/50 $\mu \mathrm{s} ; 0.5 \mathrm{Ws}$
Test voltage:	$50 \mathrm{~Hz}, 1 \mathrm{~min}$. acc. to EN 61 010-1
	5550 V, inputs versus all other circuits as well as outer surface
	3250 V, input circuits versus each other
	3700 V, power supply versus outputs and SCl as well as outer surface
	490 V, outputs and SCI versus each other and versus outer surface

Power supply $\rightarrow \bigcirc$

AC/DC power pack (DC and $50 \ldots 60 \mathrm{~Hz}$)
Table 1: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V}$ DC/AC	DC $-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC/AC	AC $\pm 10 \%$

Consumption: $\quad \leq 9 \mathrm{~W}$ resp. $\leq 10 \mathrm{VA}$

Programming connector on transducer

Interface:
DSUB socket:

Installation data

Housing:

Space requirements:

Front plate colour:
Designation
Mounting position:
Electrical connections:

Coding:

Weight:

Ambient tests

EN 60 068-2-6:
Acceleration:
Frequency range:

Number of cycles:
EN 60 068-2-27:
Acceleration:

EN 60 068-2-1/-2/-3:

Ambient conditions

Variations due to ambient temperature:
Nominal range of use for temperature:
Storage temperature:
Annual mean
relative humidity:

RS 232 C
9 -pin

The interface is electrically insulated from all other circuits.

Plug-in module for 19 " rack-mounted case, Euro format $100 \times 160 \mathrm{~mm}$

14 TE (70.82 mm) (see section "Dimensional drawing")
Grey RAL 7032
EURAX DME 4
Any
Two 32-pole plugs acc. to
DIN 41 612, pattern F and 6-pole plug (contact fitting see section "Electrical connections")

By coding pins, removed / not removed, see section "Electrical connections")

Approx. 0.7 kg

Vibration

$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep: 1 octave/minute

10, in each of the three axes
Shock
$3 \times 50 \mathrm{~g}$
3 shocks each in 6 directions
Cold, dry heat, damp heat
$0 . .15 . . .30 \ldots 45^{\circ} \mathrm{C}$ (usage group II)

$$
\pm 0.1 \% / 10 \mathrm{~K}
$$

$$
-40 \text { to }+85^{\circ} \mathrm{C}
$$ -40 to $+85^{\circ} \mathrm{C}$

$$
\leq 75 \%
$$

$\leq 75 \%$

EURAX DME 440 with RS 485 interface Programmable multi-transducer

Table 2: Ordering Information

Table 3: Programming

* Basic accuracy 0.5 c

Table 3 continued on next page!

EURAX DME 440 with RS 485 interface
 Programmable multi-transducer

Continuation "Table 3: Programming"

DESCRIPTION						Application		
						A11 ... A16	A34	A24 / A44
5. Measured variable, output A Not used						AA000	AA000	AA000
		Initial	value X0	Final value X				
U	System		$\mathrm{XO}=0$		$\mathrm{X} 2=\mathrm{Ur}$	AA001	-	-
U12	L1-L2		$\mathrm{XO}=0$		$\mathrm{X} 2=\mathrm{Ur}$	-	AA001	AA001
U	System	$0 \leq$	$\mathrm{X0} \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} \leq$	$\mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur}$	AA901	-	-
U1N	L1-N	$0 \leq$	$\mathrm{X0} \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} / \sqrt{3}$	$\leq \mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur} / \sqrt{3}$	-	-	AA902
U2N	L2-N	$0 \leq$	$\mathrm{X} 0 \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} / \sqrt{3}$		-	-	AA903
U3N	L3-N	$0 \leq$	$\mathrm{X} 0 \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} / \sqrt{3}$		-	-	AA904
U12	L1-L2	$0 \leq$	$\mathrm{X} 0 \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} \leq$	$\mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur}$	-	AA905	AA905
U23	L2-L3	$0 \leq$	$\mathrm{X} 0 \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} \leq$	$\mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur}$	-	AA906	AA906
U31	L3-L1	$0 \leq$	$\mathrm{X} 0 \leq 0.9 \cdot \mathrm{X} 2$	$0.8 \cdot \mathrm{Ur} \leq$	$\mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur}$	-	AA907	AA907
I	System	$0 \leq$	X0 $\leq 0.8 \cdot \mathrm{X} 2$	$0.5 \cdot \mathrm{Ir} \leq$	$\mathrm{X} 2 \leq 1.5 \cdot \mathrm{lr}$	AA908	-	
11	L1	$0 \leq$	$\mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	$0.5 \cdot \mathrm{Ir} \leq$	$\mathrm{X} 2 \leq 1.5 \cdot \mathrm{lr}$	-	AA909	AA909
12	L2	$0 \leq$	$\mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	$0.5 \cdot \mathrm{Ir} \leq$	X2 $\leq 1.5 \cdot \mathrm{Ir}$	-	AA910	AA910
13	L3	$0 \leq$	$\mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	$0.5 \cdot \mathrm{Ir} \leq$	$\mathrm{X} 2 \leq 1.5 \cdot \mathrm{lr}$	-	AA911	AA911
P	System	-X2	$\leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$		$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5$	AA912	AA912	AA912
P1	L1	-X2	$\leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$	0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA913
P2	L2	-X2	$\leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$	0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA914
P3	L3	-X2	$\leq \mathrm{X0} 50.8 \cdot \mathrm{X} 2$		$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-_	AA915
Q	System	-X2	$\leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$		$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5$	AA916	AA916	AA916
Q1	L1	-X2	$\leq \mathrm{XO} \leq 0.8 \cdot \mathrm{X} 2$	0,1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA917
Q2	L2	-X2	$\leq \mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA918
Q3	L3	-X2	$\leq \mathrm{X0} 50.8 \cdot \mathrm{X} 2$	0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA919
PF	System	$-1 \leq$	X0 \leq (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	AA920	AA920	AA920
PF1	L1	-1 \leq	$\mathrm{X0} \leq$ (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	-	-	AA921
PF2	L2	-1 \leq	X0 \leq (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	-	-	AA922
PF3	L3	$-1 \leq$	$\mathrm{X0} 0$ (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	-	-	AA923
QF	System	$-1 \leq$	$\mathrm{X} 0 \leq(\mathrm{X} 2-0.5)$		$\leq \mathrm{X} 2 \leq 1$	AA924	AA924	AA924
QF1	L1	$-1 \leq$	$\mathrm{X0} 0$ (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	-	-	AA925
QF2	L2	-1 \leq	$\mathrm{X0} 0 \leq \mathrm{X} 2-0.5)$		$\leq \mathrm{X} 2 \leq 1$	-	-	AA926
QF3	L3	$-1 \leq$	$\mathrm{X0} 0$ (X2-0.5)		$\leq \mathrm{X} 2 \leq 1$	-	-	AA927
F	$15.3 \mathrm{~Hz} \leq \mathrm{XO} \leq \mathrm{X} 2-1 \mathrm{~Hz}$			X0 + 1	$\mathrm{Hz} \leq \mathrm{X} 2 \leq 65 \mathrm{~Hz}$	AA928	AA928	AA928
S	System $0 \leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$				$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5$	AA929	AA929	AA929
S1	L1	$0 \leq \quad \mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$		0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA930
S2	L2	$0 \leq$	$\mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$	0.1	X2 / Sr ≤ 0.5	-	-	AA931
S3	L3	$0 \leq$	$\mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	0.1	$\leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$	-	-	AA932
IM	System	$0 \leq$	$\mathrm{X} 0 \leq 0.8 \cdot \mathrm{X} 2$	$0.5 \cdot \mathrm{Ir}$	X2 $\leq 1.5 \cdot \mathrm{Ir}$	-	AA933	AA933
IMS	System	$-\mathrm{X} 2 \leq \mathrm{X0} \leq 0.8 \cdot \mathrm{X} 2$		$0.5 \cdot \mathrm{lr}$	X2 $\leq 1.5 \cdot \mathrm{lr}$	-	AA934	AA934
LF	System	$-1 \leq \mathrm{X0} 0$ ($\mathrm{X} 2-0.5$)			$\leq \mathrm{X} 2 \leq 1$	AA935	AA935	AA935
LF1	L1	$-1 \leq \mathrm{XO} \leq(\mathrm{X} 2-0.5)$			$\leq \mathrm{X} 2 \leq 1$	-	-	AA936
LF2	L2	$-1 \leq \mathrm{XO} 0$ ($\mathrm{X} 2-0.5$)		0	$\leq \mathrm{X} 2 \leq 1$	-	-	AA937
LF3	L3	$-1 \leq \mathrm{X0} 0$ ($\mathrm{X} 2-0.5$)		0	$\leq \mathrm{X} 2 \leq 1$		-	AA938
IB	System	$\begin{aligned} & X 0=0 \\ & X 0=0 \end{aligned}$	$1 \leq \mathrm{IBT} \leq 30 \mathrm{~min} \quad 0.5$		Ir \leq X2 $\leq 1.5 \cdot$ Ir	AA939		-
IB1	L1		$1 \leq \mathrm{IBT} \leq 30 \mathrm{~min} \quad 0$.		$\mathrm{lr} \leq \mathrm{X} 2 \leq 1.5 \cdot \mathrm{Ir}$	-	AA940	AA940
IB2	L2	$X 0=0$ $X 0=0$	$1 \leq \mathrm{IBT} \leq 30 \mathrm{~min} \quad 0.5$		$\mathrm{Ir} \leq \mathrm{X} 2 \leq 1.5 \cdot \mathrm{Ir}$	-	AA941	AA941
IB3	L3	$X 0=0$ $X 0=0$	$0 \quad 1 \leq \mathrm{IBT} \leq 30$	min 0.5	$\operatorname{lr} \leq \mathrm{X} 2 \leq 1.5 \cdot \mathrm{Ir}$	-	AA942	AA942
BS	System	X0 = 0	$1 \leq \mathrm{BST} \leq 30 \mathrm{~min} 0.5$		Ir \leq X2 $\leq 1.5 \cdot$ Ir	AA943	-	-
BS1	L1	$\mathrm{XO}=0$	$0 \quad 1 \leq \mathrm{BST} \leq$	$0 \mathrm{~min} \quad 0.5$	Ir \leq X2 $\leq 1.5 \cdot \mathrm{Ir}$	-	AA944	AA944
BS2	L2	$\mathrm{XO}=0$	$0 \quad 1 \leq \mathrm{BST} \leq$	0 min 0.5	$\mathrm{lr} \leq \mathrm{X} 2 \leq 1.5 \cdot \mathrm{Ir}$	-	AA945	AA945
BS3	L3	$\mathrm{XO}=$	$0 \quad 1 \leq \mathrm{BST} \leq$	30 min 0.5	$\mathrm{Ir} \leq \mathrm{X} 2 \leq 1.5 \cdot \mathrm{Ir}$	-	AA946	AA946
UM	System	$0 \leq X 0 \leq 0.8 \cdot X 2$		0.8	$\mathrm{Ur} \leq \mathrm{X} 2 \leq 1.2 \cdot \mathrm{Ur}$	-	-	AA947

Continuation "Table 3: Programming"

DESCRIPTION	A11 ... A16	pplicatio A34	A24 / A44
6. Output signal, output A	AB01 AB91 AB92	$\begin{aligned} & \text { AB01 } \\ & \text { AB91 } \\ & \text { AB92 } \end{aligned}$	$\begin{aligned} & \text { AB01 } \\ & \text { AB91 } \\ & \text { AB92 } \end{aligned}$
7. Characteristic, output A Linear Bent $\quad(X 0+0.015 \cdot X 2) \quad \leq X 1 \leq 0.985 \cdot X 2 \quad Y 0 \leq Y 1 \leq Y 2$	$\begin{aligned} & \text { AC01 } \\ & \text { AC91 } \end{aligned}$	$\begin{aligned} & \text { AC01 } \\ & \text { AC91 } \end{aligned}$	$\begin{aligned} & \text { AC01 } \\ & \text { AC91 } \end{aligned}$
8. Limits, output A $\begin{array}{lll}\text { Standard } & Y \min =Y 0-0.25 \mathrm{Y} 2 & Y \max =1.25 \mathrm{Y} 2 \\ & (Y 0-0.25 \mathrm{Y} 2) \leq \mathrm{Ymin} \leq \mathrm{YO} & \mathrm{Y} 2 \leq \mathrm{Ymax} \leq 1.25 \mathrm{Y} 2\end{array}$	$\begin{aligned} & \text { AD01 } \\ & \text { AD91 } \end{aligned}$	$\begin{aligned} & \text { AD01 } \\ & \text { AD91 } \end{aligned}$	$\begin{aligned} & \text { AD01 } \\ & \text { AD91 } \end{aligned}$
9. Measured variable, output B Same as output A, but markings start with a capital B	BA ...	BA ...	BA ...
10. Output signal, output B Same as output A, but markings start with a capital B	BB ..	BB ..	BB ..
11. Characteristic, output B Same as output A, but markings start with a capital B	BC ..	BC ..	BC ..
12. Limits, output B Same as output A, but markings start with a capital B	BD ..	BD ..	BD ..
13. Measured variable, output C Same as output A, but markings start with a capital C	CA ...	CA ...	CA ...
14. Output signal, output C Same as output A , but markings start with a capital C	CB ..	CB ..	CB ..
15. Characteristic, output C Same as output A , but markings start with a capital C	CC ..	CC ..	CC ..
16. Limits, output C Same as output A , but markings start with a capital C	CD ..	CD ..	CD ..
17. Measured variable, output D Same as output A, but markings start with a capital D	DA ..	DA ..	DA ..
18. Output signal, output D Same as output A, but markings start with a capital D	DB ..	DB ..	DB ..

EURAX DME 440 with RS 485 interface
 Programmable multi-transducer

Continuation "Table 3: Programming"

DESCRIPTION	A11 ... A16 $\begin{array}{c}\text { Application } \\ \text { A34 }\end{array}$ A24 / A44		
19. Characteristic, output D Same as output A, but markings start with a capital D	DC ..	DC ..	DC ..
20. Limits, output D Same as output A, but markings start with a capital D	DD ..	DD ..	DD ..
21. Energy counter 1 Not used	EAOO	EAOO	EAOO
I System $[\mathrm{Ah}]$ I1 L 1 $[\mathrm{Ah}]$ I2 L 2 $[\mathrm{Ah}]$ I3 L 3 $[\mathrm{Ah}]$	EA50 \qquad \qquad	EA51 EA52 EA53	EA51 EA52 EA53
S System [VAh] S1 L1 [VAh] S2 L2 [VAh] S3 L3 [VAh]	EA54 \qquad \qquad	EA54 \qquad —	$\begin{aligned} & \text { EA54 } \\ & \text { EA55 } \\ & \text { EA56 } \\ & \text { EA57 } \end{aligned}$
P System (incoming) [Wh] P1 L1 (incoming) $[\mathrm{Wh}]$ P2 L2 (incoming) $[\mathrm{Wh}]$ P3 L3 (incoming) $[\mathrm{Wh}]$	EA58 \qquad \qquad	EA58 - -	$\begin{aligned} & \text { EA58 } \\ & \text { EA59 } \\ & \text { EA60 } \\ & \text { EA61 } \end{aligned}$
Q System (inductive) (Varh] Q1 L1 (inductive) $[$ Varh] Q2 L2 (inductive) $[$ Varh] Q3 L3 (inductive) $[$ Varh $]$	EA62 - \qquad	EA62 \qquad \qquad	$\begin{aligned} & \text { EA62 } \\ & \text { EA63 } \\ & \text { EA64 } \\ & \text { EA65 } \end{aligned}$
P System (outgoing) $[\mathrm{Wh}]$ P1 L1 (outgoing) $[\mathrm{Wh}]$ P2 L2 (outgoing) $[\mathrm{Wh}]$ P3 L3 (outgoing) $[\mathrm{Wh}]$	EA66 \qquad	EA66 - -	$\begin{aligned} & \text { EA66 } \\ & \text { EA67 } \\ & \text { EA68 } \\ & \text { EA69 } \end{aligned}$
Q System (capacitive) Varh] Q1 L1 (capacitive) $[$ Varh] Q2 L2 (capacitive) $[$ Varh] Q3 L3 (capacitive) Varh]	EA70 -	EA70 \qquad	$\begin{aligned} & \text { EA70 } \\ & \text { EA71 } \\ & \text { EA72 } \\ & \text { EA73 } \end{aligned}$
22. Energy counter 2 Same as energy counter 1, but markings start with a capital F	FA ..	FA ..	FA ..
23. Energy counter 3 Same as energy counter 1, but markings start with a capital G	GA ..	GA ..	GA ..
24. Energy counter 4 Same as energy counter 1, but markings start with a capital H	HA ..	HA ..	HA ..

Electrical connections

Function			Connect.
Measuring input	AC current	IL1	$1 / 2$
		IL2	$3 / 4$
		IL3	$5 / 6$
	AC voltage	UL1	6d
		UL2	10d
		UL3	14d
		N	$2 z$
Outputs\bigcirc	Analogue		
	$\bigcirc \mathrm{A}$	+	22d
		-	$22 z$
	$\bigcirc B$	+	18d
		-	$18 z$
	$\bigcirc \mathrm{C}$	+	14d
		-	$14 z$
	$\bigcirc D$	+	10d
		-	10z
RS 485 (MODBUS)	Tx+/Rx+Tx-/Rx-		6d
			6 z
		GND	2d
		$\stackrel{1}{=}$	2 z
Power supply	AC	~	$28 z$
		\sim	32d
	DC	+	32d
		-	$28 z$

Coding pin

- Contact fitted

Coding pin broken out

- No contact

DME 440 Back

左

System / application	

Measuring inputs

Plug wiring

N

EURAX DME 440 with RS 485 interface Programmable multi-transducer

Measuring inputs							
System / application	Plug wiring						
3-wire 3-phase symmetric load I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:						
3-wire 3-phase symmetric load phase-shift U: L1 - L2 I: L1		accor Con 1 1		L1 L2 L3 follo Cd L2 L3		le for curre	ent in L2 or L3:
3-wire 3-phase symmetric load phase-shift U: L3 - L1 I: L1	Connect the voltage	acco Con 1 1		$\begin{array}{r} \\ \hline \text { L1 } \\ \text { L2 } \\ \text { L3 } \\ \text { Le follc } \\ \hline 14 d \\ \hline L 1 \\ \hline L 2 \end{array}$	14d 6d L2 2 L3	le for curre	ent in L2 or L3:

EURAX DME 440 with RS 485 interface Programmable multi-transducer

Measuring inputs	
System / application	Plug wiring
4-wire 3-phase asymmetric load	3 single-pole insulated voltage transformers in high-voltage system
4-wire 3-phase asymmetric load, Open-Y connection	Low-voltage system 2 single-pole insulated voltage transformers in high-voltage system

Relationship between PF, QF and LF

Connecting devices to the bus

The RS 485 interface of the DME 440 is galvanically isolated from all other circuits. For an optimal data transmission the devices are connected via a 3-wire cable, consisting of a twisted pair cable (for data lines) and a shield. There is no termination required. A shield both prevents the coupling of external noise to the bus and limits emissions from the bus. The shield must be connected to solid ground.

You can connect up to 32 members to the bus (including master). Basically devices of different manufacturers can be connected to the bus, if they use the standard MODBUS ${ }^{\circledR}$ protocol. Devices without galvanically isolated bus interface are not allowed to be connected to the shield.

The optimal topology for the bus is the daysi chain connection from node 1 to node 2 to node n . The bus must form a single continuous path, and the nodes in the middle of the bus must have short stubs. Longer stubs would have a negative impact on signal quality (reflexion at the end). A star or even ring topology is not allowed.

There is no bus termination required due to low data rate. If you got problems when using long cables you can terminate the bus at both ends with the characteristic impedance of the cable (normally about 120Ω). Interface converters RS 232 a RS 485 or RS 485 interface cards often have a built-in termination network which can be connected to the bus. The second impedance then can be connected directly between the bus terminals of the device far most.

Fig. 6 shows the connection of transducers DME 440 to the MODBUS. The RS 485 interface can be realized by means of PC built-in interface cards or interface converters. Both is shown using i.e. the interfaces 13601 and 86201 of W \& T (Wiesemann \& Theis $\mathrm{GmbH})$. They are configured for a 2 -wire application with automatic control of data direction. These interfaces provide a galvanical isolation and a built-in termination network.

Important:

- Each device connected to the bus must have a unique address
- All devices must be adjusted to the same baudrate.

Fig. 6

EURAX DME 440 with RS 485 interface Programmable multi-transducer

Dimensional drawing

Fig. 7. EURAX DME 440, front plate width 14 TE.

Table 4: Accessories

Description	Order No.
Programming cable	980179
Configuration software DME 4 for EURAX DME 424, 440, 442 Windows 3.1x, 95, 98, NT and 2000 on CD in German, English, French, Italian and Dutch (Download free of charge under http://www.gmc-instruments.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146557
Set for incorporation (incl. 1 coding strip, 3 coding pegs and 8 screws) LV edge connector plug and heavy current edge connector socket for mounting in 19" rack GTU 0509 resp. EURAX BT 901 LV edge connector plug with wire-wrap posts, heavy current edge connector plug with 0,5 m cable	138885
LV edge connector plug with soldering posts, heavy current edge connector plug with 0,5 m cable	138869
Software METRAwin 10	128373
Operating Instructions DME 440-2 B d-f-e	127193

Version with GTU front plate to order acc. to NLB 876.

Standard accessories

1 Operating Instructions for EURAX DME 440 in three languages: German, French, English
1 blank type label, for recording programmed settings
1 Interface definition DME 440: German, French or English

[^1]

PROGRAMMING FOR EURAX TYPE DME 440

with 4 analogue outputs and bus interface RS 485 (MODBUS ${ }^{\circledR}$)
(see Data Sheet DME 440-2 Le, Table 3: «Programming")

Customer / Agent: \qquad Date: Order No. / Item: \qquad Delivery date: No of instruments: \qquad Type of instruments (marking): \qquad				

Codes for features 1 to 24:
Features 1 to 24 concern data for configuring the software.

Continued on next page!

21. Energy counter 1

F	A	

22. Energy counter 2

23. Energy counter 3

H	A	

24. Energy counter 4
[^2]Aargauerstrasse 7
CH-5610 Wohlen/Switzerland
Phone +41566182111
Fax +4156 6182458
e-mail: cbag@gmc-instruments.com

[^0]: $1=$ Input transformer
 7 = D/A converter
 2 = Multiplexer
 8 = Output amplifier / Latching stage
 3 = Latching stage $\quad 9=$ Programming interface RS-232
 $4=$ A/D converter $\quad 10=$ Bus RS 485 (MODBUS)
 5 = Microprocessor
 11 = Power supply
 $6=$ Electrical insulation

[^1]: Printed in Switzerland • Subject to change without notice • Edition 09.00 • Data sheet No DME 440-2 Le

[^2]: Printed in Switzerland • Subject to change without notice • Edition 09.00 • Data sheet No. W 2402 e

